San Diego Bay Debris Study

Presentation at the Trash Amendment Monitoring Workshop

April 18, 2017

Ted Von Bitner, Associate Scientist Amec Foster Wheeler

Presentation Outline

- 1) Project Review
- 2) Results
- 3) Lessons Learned

- Complete first comprehensive survey of bay and watershed receiving waters
 (Apr 2014 to Oct 2016)
- ► Establish a baseline to assess against future changes
- Assist municipalities in prioritizing locations for future trash controls

Stakeholder Workgroup

Technical Advisors

Dr. Sherry Lippiatt California Regional Coordinator at NOAA Marine Debris Program

Dr. Brock Bernstein Independent Consultant Program Design and Evaluation

ight '13 Marine Debris Lead Scientist

Study Implementation Framework

San Diego Regional Board, Practical Vision 2013 Water-Body Oriented Monitoring and Assessment Metrics (M)

- 1) (Status) How do the quantities and types of debris in different habitats vary during dry and wet season?
- 2) (Transport) What types of riverine debris do wet weather flows transport to the bay?
- 3) (Fate) What species caught in the bay has ingested plastic pieces?

- Probabilistic and targeted based sites within key habitats of interest
- ▶ Pre- and post-storm surveys in open water, intertidal, and riverine habitats
- Continuous collection in bay to record seasonal variations

Methods

- Standard methods from:
 - (Riverine) SWAMP Rapid Trash Assessment
 - (Shoreline)
 NOAA Marine Debris Program
 - (Marina) Automated trash skimmers
 - (Open Water)
 So Cal Bight Program Trawls
- ► Trash type (e.g. plastic bags), count, and volume
- Debris sizes
 - macro-plastics(>25 cm),
 - meso-plastic (25 cm 5 mm),
 - micro-plastic (5 mm 0.35 mm)

Tested alternative methods in small number of habitats

Study Locations

Conditions Monitoring (M1): Bay

Trash Characterization along Intertidal

Highest debris amounts located along wrack line

Trash Characterization at Skimmers

Trash Characterization on Open Water

Condition Monitoring (M1): Riverine

Trash characterization and hot spot identification

Trash Characterization in Chollas Creek

DW117

0

Α

Quantitative Survey

805

N DIEGO

DW203

--- DW202

NF005 NF010 NF008 NF009 NF007 NF004 NF006 LEMON GROVE LEMON GROVE NF003 NE01 DW193 SAN DIEGO SF005 DW207 SF008 SF0 DW190 SF010 SF003 SE007 DW204 S COUNTY SF002 DW201 SF001 1000 SWAMP RTA Mean Counts 28 miles 30 sites 500

Β

Visual Survey Score

D

Qualitative Survey

Stressor Identification Monitoring (M2)

amec

foster

Stressor Identification Monitoring (M2)

amed

foster wheeler

Lessons Learned

Lesson Learned 1.

Need to manage complexities of current methods and design tiered approaches for different end users.

Lesson Learned 2.

Labor intensive methods makes surveys challenging and volunteers less likely to return

Lesson Learned 3.

Rapid methods could improve representativeness and increase survey efficiency

Rapid Method (4x more)

Lesson Learned 4.

Qualitative survey improved assessments and increased management options

Green (Clean) 3.85 miles (14.1%)

Yellow (Few Pieces) 13.21 miles (48.5 %)

Orange (Small to Moderate) 6.75 miles (24.8 %)

Red (Moderate to High) 3.43 miles (12.6 %)

Lesson Learned 5.

Quantitative survey methods should be limited to countable key trash items

Degraded polystyrene pieces were often too numerous to count

Terra Miller-Cassman, Amec Foster Wheeler Dr. Theresa Talley, California Sea Grant Travis Pritchard, San Diego Coastkeeper Chad Loflen, San Diego RWQCB Heather Krish, City of San Diego Christiana Boerger, US Navy

> Project Management, SWAMP Dr. Betty Fetscher Dr. Lilian Busse

Questions

Contact Information

Ted Von Bitner Amec Foster Wheeler, Environment and Infrastructure 9177 Sky Park Court, San Diego CA, 92672 (858) 514-6401 Theodore.VonBitner@amecfw.com